Свойства кислорода и способы его получения. Как получают кислород в промышленности Формула получения кислорода в промышленности

Вопрос № 2 Как получают кислород в лаборатории ив промышленности? Напишите уравнения соответствующих реакций. Чем отличаются эти способы друг от друга?

Ответ:

В лаборатории кислород можно получить следующими способами:

1) Разложение перекиси водорода в присутствии катализатора (оксида марганца

2) Разложение бертолетовой соли (хлората калия):

3) Разложение перманганата калия:

В промышленности кислород получают из воздуха, в котором его содержится около 20% по объему. Воздух сжижают под давлением и при сильном охлаждении. Кислород и азот (второй основной компонент воздуха) имеют разные температуры кипения. Поэтому их можно разделить перегонкой: азот имеет более низкую температуру кипения, чем кислород, поэтому азот испаряется раньше кислорода.

Отличия промышленных и лабораторных способов получения кислорода:

1) Все лабораторные способы получения кислорода химические, то есть при этом происходит превращение одних веществ в другие. Процесс получения кислорода из воздуха - физический процесс, поскольку превращение одних веществ в другие не происходит.

2) Из воздуха кислорода можно получать в гораздо больших количествах.

При и резке металла осуществляется высокотемпературным газовым пламенем, получаемым при сжигании горючего газа или паров жидкости в смеси с технически чистым кислородом.

Кислород является самым распространенным элементом на земле , встречающимся в виде химических соединений с различными веществами: в земле - до 50% по массе, в соединении с водородом в воде - около 86% по массе и в воздухе - до 21% по объему и 23% по массе.

Кислород при нормальных условиях (температура 20°С, давление 0,1 МПа) - это бесцветный, негорючий газ, немного тяжелее воздуха, не имеющий запаха, но активно поддерживающий горение. При нормальном атмосферном давлении и температуре 0°С масса 1 м 3 кислорода равна 1,43 кг, а при температуре 20°С и нормальном атмосферном давлении - 1,33 кг.

Кислород имеет высокую химическую активность , образуя соединения со всеми химическими элементами, кроме (аргона, гелия, ксенона, криптона и неона). Реакции соединения с кислородом протекают с выделением большого количества теплоты, т. е. носят экзотермический характер.

При соприкосновении сжатого газообразного кислорода с органическими веществами, маслами, жирами, угольной пылью, горючими пластмассами может произойти их самовоспламенение в результате выделения теплоты при быстром сжатии кислорода, трении и ударе твердых частиц о металл, а также электростатического искрового разряда. Поэтому при использовании кислорода необходимо тщательно следить за тем, чтобы он не находился в контакте с легковоспламеняющимися и горючими веществами.

Всю кислородную аппаратуру, кислородопроводы и баллоны необходимо тщательно обезжиривать. способен образовывать в широких пределах взрывчатые смеси с горючими газами или парами жидких горючих, что также может привести к взрывам при наличии открытого огня или даже искры.

Отмеченные особенности кислорода следует всегда иметь в виду при использовании его в процессах газопламенной обработки.

Атмосферный воздух в основном представляет собой механическую смесь трех газов при следующем их объемном содержании: азота - 78,08%, кислорода - 20,95%, аргона-0,94%, остальное - углекислый газ, закись азота и др. Кислород получают разделением воздуха на кислород и методом глубокого охлаждения (сжижения), попутно идет отделение аргона, применение которого при непрерывно возрастает. Азот применяют как защитный газ при сварке меди.

Кислород можно получать химическим способом или электролизом воды. Химические способы малопроизводительны и неэкономичны. При электролизе воды постоянным током кислород получают как побочный продукт при производстве чистого водорода.

В промышленности кислород получают из атмосферного воздуха методом глубокого охлаждения и ректификации. В установках для получения кислорода и азота из воздуха последний очищают от вредных примесей, сжимают в компрессоре до соответствующего давления холодильного цикла 0,6-20 МПа и охлаждают в теплообменниках до температуры сжижения, разница в температурах сжижения кислорода и азота составляет 13°С, что достаточно для их полного разделения в жидкой фазе.

Жидкий чистый кислород накапливается в воздухоразделительном аппарате, испаряется и собирается в газгольдере, откуда компрессором его накачивают в баллоны под давлением до 20 МПа.

Технический кислород транспортируют также по трубопроводу. Давление кислорода, транспортируемого по трубопроводу, должно быть согласовано между изготовителем и потребителем. К месту кислород доставляется в кислородных баллонах, и в жидком виде - в специальных сосудах с хорошей теплоизоляцией.

Для превращения жидкого кислорода в газ используют газификаторы или насосы с испарителями для жидкого кислорода. При нормальном атмосферном давлении и температуре 20°С 1 дм 3 жидкого кислорода при испарении дает 860 дм 3 газообразного. Поэтому доставлять кислород к месту сварки целесообразно в жидком состоянии, так как при этом в 10 раз уменьшается масса тары, что позволяет экономить металл на изготовление баллонов, уменьшать расходы на транспортировку и хранение баллонов.

Для сварки и резки по -78 технический кислород выпускается трех сортов:

  • 1-й - чистотой не менее 99,7%
  • 2-й - не менее 99,5%
  • 3-й - не менее 99,2% по объему

Чистота кислорода имеет большое значение для кислородной резки. Чем меньше содержится в нем газовых примесей, тем выше скорость реза, чище и меньше расход кислорода.

Кислоро́д (O 2) - химически активный газ без цвета, вкуса и запаха.

Проще всего получить кислород из воздуха, поскольку воздух - не соединение, и разделить воздух на элементы не так уж трудно.

Основным промышленным способом получения кислорода из воздуха является криогенная ректификация, когда жидкий воздух разделяют на компоненты в ректификационных колоннах так же, как делят, например, нефть. Но чтобы превратить атмосферный воздух в жидкость, его нужно охладить до минус 196°С. Для этого последний нужно сжать, а затем дать ему расшириться и при этом заставить его производить механическую работу. Тогда в соответствии с законами физики воздух обязан охлаждаться. Машины, в которых это происходит, называют детандерами. Современные криогенные установки для разделения воздуха, в которых холод получают с помощью турбодетандеров, дают промышленности, прежде всего металлургии и химии, сотни тысяч кубометров газообразного кислорода.

Также успешно применяются в промышленности воздухоразделительные установки на основе мембранной или адсорбционной технологии.

Применение кислорода в промышленности и медицине

Отрасль

Применение кислорода

Металлургическая промышленность

  • Производство стали из чугуна (удаление избытка углерода из чугуна).
  • Конвертерный способ производства стали.
  • Электросталеплавильное производство.
  • Кислородное дутье в доменных и мартеновских печах, конверторах.
  • Производство ферросплавов.
  • Выплавка никеля, цинка, свинца, циркония и других цветных металлов.
  • Интенсификация процессов обжига сырья в цветной металлургии.
  • Прямое восстановление железа.
  • Переработка штейнов.

Химическая промышленность

  • Кислород как реактив-окислитель при получении искусственного жидкого топлива, смазочных масел, азотной и серной кислот, метанола, аммиака и аммиачных удобрений, перекисей металлов и др. химических продуктов.
  • Производство ацетилена (термоокислительный крекинг).

Нефтехимическая промышленность

  • Кислород применяется для более эффективной работы НПЗ - для увеличения производительности установок по крекингу нефти.

Энергетика

  • Газификация твердого топлива.
  • Сжатие твердо-угольной смеси.
  • Обогащение кислородом воздуха для промышленных котлов.

Строительство и машиностроение

  • Кислородо-ацетиленовая газорезка и газосварка металлов и сплавов.
  • Плазменный раскрой металлов и пайка.
  • Напыление и наплавка металлов.

Золотодобыча

  • Добыча драгоценных металлов из руд.
  • Термическое бурение твердых пород.
  • Аффинаж золота.

Нефтедобыча

  • Закачка кислорода в пласт для увеличения энергии вытеснения.
  • Создание эффективно перемещающегося внутри пласта очага горения.

Стекольная промышленность

  • Кислород позволяет повысить температуру в стекловаренных печах и улучшить процесс горения, уменьшить выбросы окислов азота и твердых частиц из печей.
  • При производстве стеклоизделий кислород подается на газовые горелки, которые используются для отрезания некондиционной части изделия, оплавления кромок и огневой полировки поверхности для оплавления микродефектов.
  • Кислород необходим при выдувке стекла, на фабриках медицинского и лабораторного стекла, при производстве электрических лампочек.

Экология

Кислород применяется в процессах:

  • Для повышения эффективности работы озонаторных установок - озонирование для водоподготовки, очистки сточных вод, отбеливания целлюлозы и т. д.
  • Утилизация отходов- при обезвреживании (окислении) химически активных отходов в очистных установках в мусоросжигательных печах с кислородным дутьём.
  • При очистке питьевой воды.
  • При вторичной переработке металлов.

Сельское хозяйство

Пищевая промышленность

  • В пищевой промышленности кислород зарегистрирован в качестве пищевой добавки E948.
  • Кислород как пропеллент и упаковочный газ.

Озонаторные установки

  • Озонирование для водоподготовки, очистки сточных вод, отбеливания целлюлозы и т. д.

Медицина

  • Обогащение кислородом дыхательных газовых смесей.
  • Кислородные коктейли.
  • Анестезия (наркоз).
  • Физтотерапия.
  • Озонирование для дезинфекции.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru//

Размещено на http://www.allbest.ru//

Министерство образования и науки Российской Федерации

МБОУ «Гимназия №1 г. Владивостока»

кислород турбодетандер разделение воздух

«Получение кислорода в промышленности»

Работу выполнила: Кадышева Ева

Ученица 8 класса «В»

МБОУ Гимназия №1

Научный руководитель: Коваленко Н.С.

Владивосток 2016

1.Введение

Кислород составляет не только существенную часть атмосферного воздуха, земной коры и питьевой воды, он также занимает 65 % массы тела человека, являясь важнейшим химическим элементом в структуре человеческого организма. Этот газ -- один из наиболее широко используемых веществ, он применяется практически во всех областях деятельности человека благодаря своим химическим и физическим свойствам.

КИСЛОРОД-химический элемент с атомным номером 8, атомная масса 16.В периодической системе элементов Менделеева кислород расположен во втором периоде в группе VIA. В свободном виде кислород -- газ без цвета, запаха и вкуса.

Развитие производства кислорода и использование его в качестве интенсификатора многих технологических процессов является одним из факторов современного технического прогресса, так как позволяет повысить производительность труда и обеспечить рост производства в ряде важнейших отраслей промышленности.

Цель: Исследование технологий промышленного производства кислорода

Изучить историю получения кислорода в промышленности;

Выявить достоинства и недостатки каждого способа получения;

Найти сферы применения кислорода

2.Историческая справка

Современные установки для разделения воздуха, в которых холод получают с помощью турбодетандеров, дают промышленности, прежде всего металлургии и химии, сотни тысяч кубометров газообразного кислорода. Они работают не только у нас, но и во всем мире.

Первый опытный образец турбодетандера, созданный П. Л. Капицей был невелик. И этот турбодетандер стал «сердцем» первой установки для получения кислорода новым методом.

В 1942 г. построили подобную, но уже намного более мощную установку, которая производила до 200 кг жидкого кислорода в час. В конце 1944 г. вводится в строй самая мощная в мире турбокислородная установка, производящая в 6-7 раз больше жидкого кислорода, чем установка старого типа, и при этом занимающая в 3-4 раза меньшую площадь.

Современный блок разделения воздуха БР-2, в конструкции которого также использован турбодетандер, мог бы за сутки работы снабдить тремя литрами газообразного кислорода каждого жителя СССР.

30 апреля 1945 г. Михаил Иванович Калинин подписал Указ о присвоении академику П.Л. Капице звания Героя Социалистического Труда «за успешную разработку нового турбинного метода получения кислорода и за создание мощной турбокислородной установки». Институт физических проблем Академии наук СССР, в котором сделана эта работа, был награжден орденом Трудового Красного Знамени.

3.Способы получения

3.1 Криогенный метод разделения воздуха

Атмосферный осушенный воздух представляет собой смесь, содержащую по объему кислород 21 % и азот 78 %, аргон 0,9% и другие инертные газы, углекислый газ, водяной пар и пр. Для получения технически чистых атмосферных газов воздух подвергают глубокому охлаждению и сжижают (температура кипения жидкого воздуха при атмосферном давлении -194,5° С.)

Процесс выглядит так: воздух, засасываемый многоступенчатым компрессором, проходит сначала через воздушный фильтр, где очищается от пыли, проходит влагоотделитель, где отделяется вода, конденсирующаяся при сжатии воздуха, и водяной холодильник, охлаждающий воздух и отнимающий тепло, образующееся при сжатии. Для поглощения углекислоты из воздуха включается аппарат -- декарбонизатор, заполняемый водным раствором едкого натра. Полное удаление влаги и углекислоты из воздуха имеет существенное значение, так как замерзающие при низких температурах вода и углекислота забивают трубопроводы и приходится останавливать установку для оттаивания и продувки.

Пройдя осушительную батарею, сжатый воздух поступает в так называемый детандер, где происходит резкое расширение и соответственно его охлаждение и сжижение. Полученный жидкий воздух подвергают дробной перегонке или ректификации в ректификационных колоннах. При постепенном испарении жидкого воздуха сначала выпаривается преимущественно азот, а остающаяся жидкость всё более обогащается кислородом. Повторяя подобный процесс многократно на ректификационных тарелках воздухоразделительных колонн, получают жидкий кислород, азот и аргон нужной чистоты.

Криогенный способ разделения воздуха позволяет получить газы самого высокого качества - кислород до 99.9%

3.2 Адсорбционный метод разделения воздуха

Криогенное разделение воздуха при всех его качественных параметрах является довольно дорогостоящим способом получения промышленных газов. Адсорбционный метод разделения воздуха, основанный на избирательном поглощении того или иного газа адсорбентами, является некриогенным способом, и широкое применение получил из-за следующих преимуществ:

высокая разделительная способность по адсорбируемым компонентам в зависимости от выбора адсорбента;

быстрый пуск и остановка по сравнению с криогенными установками;

большая гибкость установок, т.е. возможность быстрого изменения режима работы, производительности и чистоты в зависимости от потребности;

автоматическое регулирование режима;

возможность дистанционного управления;

низкие энергетические затраты по сравнению с криогенными блоками;

простое аппаратурное оформление;

низкие затраты на обслуживание;

низкая стоимость установок по сравнению с криогенными технологиями;

Адсорбционный способ используется для получения азота и кислорода, так как он обеспечивает при низкой себестоимости отличные параметры качества.

3.3 Мембранный метод разделения воздуха

Мембранный метод разделения воздуха основан на принципе выборочной проницаемости мембран. Он заключается в разнице скоростей проникновения газов сквозь полимерную мембрану при перепаде парциальных давлений. В мембрану подаётся очищенный сжатый воздух. При этом «быстрые газы» проходят через мембрану в зону с низким давлением и на выходе из мембраны обогащаются легкопроникающим компонентом. Оставшаяся часть воздуха насыщается «медленными газами» и выводится из устройства.

Мембранный метод промышленного производства кислорода характеризуется низкими затратами электроэнергии, затратами при эксплуатации. Однако данный способ позволяет получить кислород низкой чистоты до 45%.

4.Применение кислорода

Первые исследователи кислорода заметили, что в его атмосфере легче дышится. Они предсказывали широкое применение этого живительного газа в медицине и даже в повседневной жизни как средства, усиливающего жизнедеятельность человеческого организма.

Но при более углублённом изучении оказалось, что длительное вдыхание чистого кислорода человеком может вызвать заболевание и даже смерть: организм человека не приспособлен к жизни в чистом кислороде.

В настоящее время чистый кислород применяется для вдыхания лишь в некоторых случаях: например, тяжело больным туберкулёзом лёгких предлагают вдыхать кислород небольшими порциями. Аэронавты и лётчики при высотных полётах пользуются кислородными приборами. Бойцы горноспасательных отрядов часто принуждены работать в атмосфере, лишённой кислорода. Для дыхания они используют прибор, в котором сохраняется нужный для дыхания состав воздуха добавлением кислорода из баллонов, находящихся в том же приборе.

Основная масса получаемого в промышленности кислорода применяется в настоящее время для сжигания в нём различных веществ с целью получения очень высокой температуры.

Например, горючий газ ацетилен (C2H2) смешивают с кислородом и сжигают в особых горелках. Пламя этой горелки имеет такую высокую температуру, что в нём плавится железо. Поэтому кислородно-ацетиленовой горелкой пользуются для сварки стальных изделий. Такая сварка называется автогенной.

Жидкий кислород применяется для приготовления взрывчатых смесей. Особые патроны набивают измельчённой древесиной (древесной мукой) или другими измельчёнными горючими веществами и смачивают эту горючую массу жидким кислородом. При поджигании такой смеси горение происходит очень быстро, образуется большое количество газов, нагретых до очень высокой температуры. Давлением этих газов могут быть взорваны скалы, или выброшено большое количество грунта. Этой взрывчатой смесью пользуются при строительстве каналов, при проходке тоннелей и пр.

В последнее время кислород добавляют к воздуху для повышения температуры в печах при выплавке чугуна и стали. Благодаря этому ускоряется выплавка стали и повышается её качество.

Заключение

В ходе исследовательской работы были достигнуты цель и поставленные задачи.

Потребности, которые стали возникать в самых различных сферах деятельности человека, ставили перед учеными-химиками задачи по поиску новых, более производительных и менее затратных способов получения чистого кислорода.

В нашей стране ежегодно вводятся в эксплуатацию новые и расширяются действующие станции и цеха для получения кислорода.

Атмосферный воздух является неисчерпаемым источником сырья для промышленного получения кислорода. При этом, одновременно с кислородом получают азот, ацетилен, что положительно сказывается на экономическом процессе разделения.

Размещено на Allbest.ru

...

Подобные документы

    Цех получения азота и кислорода ПКО ООО "Саратоворгсинтез". Характеристика производимой продукции. Технологическая схема блока разделения воздуха. Характеристика опасных и вредных производственных факторов, воздействующих на работника в процессе работы.

    отчет по практике , добавлен 13.09.2015

    Изучение состава оборудования цеха выплавки стали. Назначение, конструкция и принцип действия машины подачи кислорода. Конструктивный расчет гидропривода подъема платформы и приводного вала машины подачи кислорода в рамках её технической модернизации.

    дипломная работа , добавлен 20.03.2017

    Разделение воздуха методом глубокого охлаждения. Составление теплового и материального баланса установки. Тепловой баланс отдельных частей воздухоразделительной установки. Расчет процесса ректификации, затраты энергии. Расчет конденсатора-испарителя.

    курсовая работа , добавлен 04.03.2013

    Обзор существующих конструкций очистки аргона от кислорода. Обоснование эффективности и расчет установки очистки аргона от кислорода с помощью цеолитового адсорбера вместо установки очистки аргона методом каталитического гидрирования с помощью водорода.

    курсовая работа , добавлен 23.11.2013

    Понятие и специфические признаки гибкого автоматизированного производства, оценка его главных преимуществ. Классификация производств по степени их гибкости. Основы роботизации промышленного производства. Особенности лазерной и мембранной технологии.

    реферат , добавлен 25.12.2010

    Общая характеристика производства чугуна и стали. Физико-химические свойства получаемых и используемых газов. Некоторые физические явления при использовании промышленных газов и пара на Челябинском металлургическом комбинате. Физика в газовой сфере.

    реферат , добавлен 13.01.2011

    Область применения технических газов. Проект автоматизации процесса разделения воздуха на азот и кислород на ПО "Электро-химический завод". Обоснование структурной схемы автоматизации. Расчет электрического освещения цеха и общей осветительной нагрузки.

    дипломная работа , добавлен 16.12.2013

    Методы очистки промышленных газов от сероводорода: технологические схемы и аппаратура, преимущества и недостатки. Поверхностные и пленочные, насадочные, барботажные, распыливающие абсорберы. Технологическая схема очистки коксового газа от сероводорода.

    курсовая работа , добавлен 11.01.2011

    Главные функции, выполняемые горном доменной печи. Скорость реакции горения топлива, диффузия молекул кислорода в пограничный слой. Количество образующейся окиси углерода, температура и концентрация кислорода в газовой фазе. Окислительные зоны печи.

    контрольная работа , добавлен 11.09.2013

    Общая характеристика цеха выплавки стали в ОАО "Северсталь". Знакомство с проектом модернизации платформы машины подачи кислорода в конвертер №3. Анализ этапов расчета приводного вала и насосных установок. Особенности проектирование червячной фрезы.

Данный урок посвящен изучению современных способов получения кислорода. Вы узнаете, с помощью каких методов и из каких веществ получают кислород в лаборатории и промышленности.

Тема: Вещества и их превращения

Урок: Получение кислорода

В промышленных целях кислород необходимо получать в больших объёмах и максимально дешёвым способом. Такой способ получения кислорода был предложен лауреатом Нобелевской премии Петром Леонидовичем Капицей. Он изобрёл установку для сжижения воздуха. Как известно, в воздухе находится около 21% по объему кислорода. Кислород можно выделить из жидкого воздуха методом перегонки, т.к. все вещества, входящие в состав воздуха имеют разные температуры кипения. Температура кипения кислорода - -183°С, а азота - -196°С. Значит, при перегонке сжиженного воздуха первым закипит и испарится азот, а затем – кислород.

В лаборатории кислород требуется не в таких больших количествах, как в промышленности. Обычно его привозят в голубых стальных баллонах, в которых он находится под давлением. В некоторых случаях всё же требуется получить кислород химическим путём. Для этого используют реакции разложения.

ОПЫТ 1. Нальем в чашку Петри раствор пероксида водорода. При комнатной температуре пероксид водорода разлагается медленно (признаков протекания реакции мы не видим), но этот процесс можно ускорить, если добавить в раствор несколько крупинок оксида марганца(IV). Вокруг крупинок черного оксида сразу начинают выделяться пузырьки газа. Это кислород. Как бы долго ни протекала реакция, крупинки оксида марганца(IV) в растворе не растворяются. То есть, оксид марганца(IV) участвует в реакции, ее ускоряет, но сам в ней не расходуется.

Вещества, которые ускоряют реакцию, но не расходуются в реакции, называют катализаторами .

Реакции, ускоряемые катализаторами, называют каталитическими .

Ускорение реакции катализатором называют катализом .

Таким образом, оксид марганца (IV) в реакции разложения пероксида водорода служит катализатором. В уравнении реакции формула катализатора записывается сверху над знаком равенства. Запишем уравнение проведенной реакции. При разложении пероксида водорода выделяется кислород и образуется вода. Выделение кислорода из раствора показывают стрелкой, направленной вверх:

2. Единая коллекция цифровых образовательных ресурсов ().

3. Электронная версия журнала «Химия и жизнь» ().

Домашнее задание

с. 66-67 №№ 2 – 5 из Рабочей тетради по химии: 8-й кл.: к учебнику П.А. Оржековского и др. «Химия. 8 класс» / О.В. Ушакова, П.И. Беспалов, П.А. Оржековский; под. ред. проф. П.А. Оржековского - М.: АСТ: Астрель: Профиздат, 2006.